专利摘要:
An electrochemical test strip is formed from a first insulating substrate layer, a second substrate layer, and an intervening insulating spacer layer. An opening in the insulating spacer layer defines a test cell which is in contact with the inner surface of the first 5 substrate on one side and the inner surface of the second substrate on the other side. The size of the test cell is determined by the area of substrate exposed and the thickness of the spacer layer. Working and counter electrodes appropriate for the analyte to be detected are disposed on the first insulating substrate in a location within the test cell. The working and counter electrodes are associated with conductive leads that allow 10 connection of the electrodes to a meter for determination of analyte. The second substrate is conductive at least in a region facing the working and counter electrodes. No functional connection of this conductive surface of the second substrate to the meter is required. When a potential difference is applied between the working and counter electrodes, because of the presence of the conductive surface on the second 15 substrate, the relevant diffusion length is not dependent on the distance between working and counter electrodes, but is instead dependent on the distance between the first and second substrates (i.e., on the thickness of the spacer layer). This means that shorter measurement times can be achieved without having to reduce the spacing of the working and counter electrodes. WO 2009/015077 PCT/US2008/070630 44--- 46 -44 4) 43 Fig 5B
公开号:AU2013204842A1
申请号:U2013204842
申请日:2013-04-12
公开日:2013-05-09
发明作者:Ian Harding;Sridhar Iyengar
申请人:Agamatrix Inc;
IPC主号:C12M1-34
专利说明:
P/00/001 Regulation 3.2 AUSTRALIA Patents Act 1990 COMPLETE SPECIFICATION STANDARD PATENT Invention title: ELECTROCHEMICAL TEST STRIP The following statement is a full description of this invention, including the best method of performing it known to us: - la ELECTROCHEMICAL TEST STRIP Statement of Related Applications This application is a divisional of Australian patent application no. 2008279274, the entire disclosure of which is incorporated herein by reference. Background of the Invention This application relates to a design for small volume electrochemical test strips suitable for amperometric detennination of analytes in a liquid test sample. Disposable, single-use electrochemical test strips are commonly employed in the determination of analytes., particularly by diabetes in the determination of blood glucose levels. Advancements in design of these strips have frequently focused on the ability to use smaller samples, since smaller blood samples can be obtained with less pain. Examples of such test strips can be seen, for example for US Patents Nos. 5437999, 5650062, 5700695, 6484046, and 6942770 and Applications Nos. US20040225230, and U S20060169599AL In known electrochemical sensors for deteml ination of glucose the reactions depicted in Fig. 1A and 1B may be used. Glucose present in the sample is oxidized in reaction II by an enzyme, such as glucose oxidase to form gluconic acid (or gluconolactone) and reduced enzyme. The reduced enzyme is regenerated to its active oxidized form by interaction 12 with oxidized mediator, for example ferricyanide. When there is an appropriate potential difference between the working and counter electrodes, the resulting reduced mediator is converted 13 to oxidized mediator at the working electrode, with concurrent oxidation of reduced mediator at the counter electrode 14. In addition the reduced mediator may diffuse 15 from the counter electrode and when it reaches the working electrode it can be converted 17 to oxidized mediator and diffuse 16 to the counter electrode complete the cycle. Fig. 2 shows two exemplary current traces in sample cells according to the prior art, in which the working and counter electrodes are disposed in a closely spaced facing (sandwich) arrangement (dotted line) and a more openly spaced side-by-side WO 2009/015077 PCT/US20081070630 2 arrangement (solid line). The mediator IS freely diffusib e between the two electrodes in both cases. The x-axis (time) starts when the measurement potential is supplied. An initial current spike 2 1 is observed in both traces that results from the charging of the double layer on. and consurming the mediator 13 close to, the portion of the electrode surface covered at the time of the measurement potential is first applied. Thereafter, there is a decline in current 22 because of the smaller f lux of mediator arriving at the working electrode, resulting from the depletion of mediator in the vicinity of the electrode. In the solid trace this persists to longer times and lower currents 23 because of continued depletion of the mediator. In the dotted line a limiting current 24 is reached, which is caused by a stable flux of reduced mediator being generated at the nearby counter electrode 14 and diffLising 15 to the working electrode. This is balanced by a flux 16 of oxidized mediator going the other way Determination of the analytc concentration in solution can be made at various points along the current traces. When the electrodes are in a closely spaced facing arrangeinent this includes at the peak value 21, the plateau level 24, or during the decrease 22 in between; the plateau current 24 has a simple linear relationship with aialyte concentration and the estimate of the current can be improved by averaging data in this rgio Over a time period. When the electrodes are side-by-side the analyze concentration can be determined from the data at the peak value 21 or in the decrease 22, 24. To use data front the decrease 22, 24 it is possible to recalculate the current data as the inverse square of current. The results of such a calculation on the data from both traces of figure 2 are shown in Fig. 3, with the minima 31 corresponding to the peaks 21, the initial straight slopes 32 corresponding to the curved decline in current 22, and the continuation of the curving decline 23 being a continuation 33 of the initial straight slope 32 for the side-by-side geometry. The plateau for the sandwich geometry 24 also manifests as a plateau 34. The results with the sandwich geometry of Figs. 2 and 3 require a sample cell with electrodes that are sufficiently close that flux of reduced mediator 15 being generated 14 at the counter electrode arrves rapidly and stabilizes rapidly at the working electrode 13 during the course of data collection. The transition between the working WO 2009/015077 PCTUS2008/070630 3 electrode being unaffected. bv the coulter electrode and being in a steady state with the flux from the counter electrode produces the curve between the straight parts 32 and 34 in Fig. 3. To minnize the time required for the test, it is desirable to decrease the time required for diffusion to occur, and for a steady state current to be established. Commonly assigned US Patent Publication No. 2005/0258036, which is incorporated herein by reference discloses an approach to this problem, adapted for use in th context of facing electrodes. The electrodes are in close proximity, which allows the system to reach the stable nlateau quickly. This favours small sample chambers and hence small sample sizes. However, this approach is not well-suited to electrodes disposed o s the Same substrate, i.e., to side-by-side electrodes. The results with the side-by-side geometry of Figs. 2 and 3 require a sample cell that is sufficiently large that flux of reduced mediator being generated at the counter electrode 14 does not arrive at the working electrode during the course of measurement. This favours large sample chambers and hence large sample sizes. Decreased sample sizes can be achieved simply by placing the electrodes closer together, but placing the electrodes closer together means flux 15 from the counter electrode arrives at the working electrode and generates an additional signal 17, causing the region, 33 to bend, reducing the accuracy of the estimate of concentration from the slope. H however, the side-by side geometry means that a steady state will not be set up as rapidly as in the sandwich geometry and so the bending will last a long time before reaching a stable plateau where more reliable data will be available to estimate the analyte concentration. The present invention provides a simple approach to decreasing the time required to arrive at a steady state current for an electrochemical test strip with side-by-side electrodes and increasing the accuracy of the estimated concentration of the analyte that can be achieved without increasing the complexity of the manufacturing process. Sumumary of the Invention The present invention provides an electrochemical test strip comprising a first insulating substrate layer, a second substrate layer, and an intervening insulating spacer layer. An opening in the insulating spacer layer defines a test cell which is in contact with the inner surface of the first substrate on one side and the Iiner surface of WO 2009/015077 PCT/US20081070630 4 the second substrate on the other side. The size of the test cell is determined by the area of substrate exposed and the thickness of the spacer layer. Working and counter electrodes appropriate for the analyte to be detected are disposed on the first insulating substrate in a location within the test cell. The working and counter electrodes are associated with conductive leads that allow connection of the electrodes to a meter for determination of analyte. At least the inner surface of the second substrate is conductive, at least in a region facing the working and counter electrodes. No functional connection of this conductive surface of the second substrate to the meter is required. In use., a potential difference is aplied between the working and counter electrodes. Because of the presence of the conductive surface on the second substrate, the relevant diffusion length is not dependent on the distance between working and counter electrodes, but is instead dependent on the distance between the first and second substrates (i.e., on the thickness of the spacer layer. This means that shorter measurement times can be achieved without having to reduce the spacing of the working and counter electrodes. Brief-Descri-ption of the DrawiIgS Figs. I A and B show reactions from a glucose detector. Fig. 2 shows a schematic of two exemplary current traces as a function of time in accordance with the prior art. Fig. 3 shows a schematic of two exemplary current traces presented as the inverse square of current as a function of time in accordance with the prior art. Figs. 4A and 4B show a cross section of a test strip in accordance with the prior art, and the relevant diffusion paths in such as test strip. Figs. 5A and 5B show a cross section of a test strip in accordance with the invention, and the relevant diffusion paths in such as test strip. Fig 6 shows the reactions relevant to determination of analyte concentration in a test strip in accordance with the invention. Fig. 7 shows a cross section through the test cell of an embodiment of a test strip according to the invention. Fig. 8 shows a top view of a test strip in accordance with the invention.
WO 2009/015077 PCT/US20081070630 5 DetailediDescription of the dinventon This application relates to electrochemical test strips. In the detailed description that follows, the invention will be discussed primarily in the context determination of blood glucose levels. This use of one primary detection system, however, should not be taken as limiting the scope of the invention, as the invention can be used in the detection of any analyte that can be detected using an electrochemical test strip. Definitions in the specification and claims of this application, the following definitions are relevant. Numerical values in the specification and claims of this application should be understood to include numerical values which are the same when reduced to the same number of significant figures and numerical values which differ from the stated value by less than the experimental error of conventional measurement technique of the type described in the present application to determine the value. The teirn "analyte" as used in the specification and claims of this application means a component of a sample to be measured. The analyze may be one that is directly oxidized or reduced in the electrochemical test strip, or one that is oxidized or reduced through the use of an enzyme and/or a redox mediator. Non-iirting examples of specific analyses include glucose, henoglobin, cholesterol and vitamin C. The term "redox mediator" as used in the specification and claims of this application means a chemical species, other than the analyte, that is oxidized and/or reduced in the course of a multi-step process transfering electrons to or from the analyte to an electrode of the electrochemical cell. Non-limiting examples of mediators include ferricyanide, p-benzoquinone, phenazine nmetosulfate. methylene blue, ferrocene derivatives, osmitn mediators, for example as described in US Patents Nos. 5,589,326; 5,710,011, 5,846,702 and 6,262,264, which are incorporated herein by reference, ruthenium mediators, such as rutheniunt anines, and ruthenium complexes as described in US Patents Nos. 5,410,059. The term determinationn of an analyte" refers to qualitative, semi-quantitative and quantitative processes fr evaluating a samnole. In a qualitative evaluation, a result WO 2009/015077 PCTUS2008/070630 6 indicates whether or riot analyte was detected in the sample. In. a semi-quantitative evaluation, the result indicates whether or not analyte is present above sone pre defined threshold. In a quantitative evaluation, the result is a numerical indication of the amount of analyte present. The term "electrochemical test strip" refers to a strip having at least two electrodes, and any necessary reagents for determination of an analyte in a sample placed between the electrodes. In preferred embodiments, the electro"hemical test strip Is disposable afier a single use, and has connectors for attachment to a separate and reusable meter that contains the electronics for applying potential, analyzing signals and displaying a result. The term "side-by-side electrodes" refers to a pair of electrodes disposed on a common substrate surface. The electrodes may be parallel strips, concentric or nested rings, nested spirals or any other suitable spatial arrangement. The term "sandwich geometry electrodes" refers to a pair of electrodes disposed in a closely spaced facing arrangement with space for the sample in between. PriorAt Surinis Fig. 4A shows a cross section through the test cell of a test strip according to the prior art. The strip has a first insulating substrate 41 on which are disposed working electrode 42 and counter electrode 43. Insulating spacer layer 44 separates the first insulating substrate 41 from the second insulating substrate 45. An operdng in the spacer iayer 44 defines two dimensions of the test cell 46, while the thickness of the spacer layer 44 defines the third. In the amperometric determination of an analyte a potential difference is applied between electrodes 42 and 43, For example, in the determination of glucose as described above, the working electrode 42 is suitably fixed at a potential of +300 mV relative to the counter electrode. The situation when flux from the counter electrode 15 arrives at the working electrode and is oxidized 17 has been discussed in terms of the increase in the electrochemical current, where the region 33 is caused to bend, WO 2009/015077 PCTUS2008/070630 7 reducing the accuracy of the estimate of concentration from the slope. Diffusion of mediator 15, 16 occurs between the electrodes along the lines shown in Fig. 4B. Thus, tie time necessary for diffusion to start affetin the slope of the region 32, 33, is dependent upon the spacing between electrodes 42 and 43. However, the side-by side geometry means that a steady state will not be set up as rapidly as in the sandwich. geometry because there is a large portion of the volume 47 where mediator will have to diffuse a long distance before reaching equilibrium with the two electrodes. Only once this steady state is reached will the data reach a simple plateau like 24. 34 where more reliable data will be available to estimate the analyte concentration. The large portion of the volume 47 that is remote from the main flux between the electrodes will affect the testing time, sample volume and accuracy of the system. To avoid the inaccuracy of deviations bendingn) in the region 33 the sample must be sufficiently large that all data is collected before any flux from the counter electrode affects data collection at the working electrode. For smaller sample sizes the reduced time before this occurs limits the amount of linear data 32 that can be collected and hence the accuracy of the concentration estimate that can be made from it. Steady state data will only be available after the entire region 47 has been brought into steady state and the side-by-side geometry is not efficient at doing this. The bending will therefore last a long time before reaching a stable plateau, giving an extended test timei In addition, the accuracy of tie concentration estimate will be sensitive to the distance between the electrodes and for the side-by-side geometry this will be defined by the repeatability of separation of the adjacent edges of the two electrodes in the disposable test strip. This is likely to introduce significant errors. Test strips of the Invention Fig. 5A shows a cross section through the test cell of an embodiment of a test strip according to the invention. The strip has a first insulating substrate 41 on which are disposed working electrode 42 and counter electrode 43. Insulating spacer layer 44 separates the first insulating substrate 41 from the second insulating substrate 45. However, insulating substrate 45 has a conductive coating 50 on its inner surface. An opening in the spacer layer 44 defines two dimensions of the test cell 46, while the WO 2009/015077 PCT/US20081070630 8 thickness of the spacer layer 44 defines the third. The conductive coating 50 is exposed in the test cell 46 and faces the working and counter electrodes 42, 43. In the amnerometric deternination of an analrte using the test strip depicted in F ig. 5A, a potential difference is applied between electrodes 42 and 43. For example, in the determination of glucose as described above, the working electrode 42 is suitably fixed at a potential of +300 mV relative to the counter electrode. Diffusion of mediator 1, 16 of course occurs between the electrodes as shown in Fig. I B. However, because of the presence of the conductive coating 50, this diffusion is not a limiting factor in the time required to established a steady state current. Rather, the relevant limiting diffusion is that. extending from the electrodes 42, 43 to the facing surface of the conductive coating 50 as shown by the lines in Fig. SB. Thus, the time necessary for diffulsion is dependent upon the thickness of the spacer layer 44. This change in the relevant portions of the diffusion occurs because the conductive coating 40 short circuits the test cell. The relevant reactions are shown in Fig 6. where reduced mediator is oxidized 6(01 at the working electrode 602 and the electron transfer out of solution Ii balanced at the working electrode 603 by reduction of the oxidized mediator 604. Rather than diffusing directly between the electrodes as in 15, 16 much of the mediator flux is transformed at the conductive layer 605: the flux of reduced mediator from the counter electrode 606 can give up electrons 607 into conductive layer 605 and diffuse back to the counter electrode 608 in the oxidized form without ever reaching the working electrode. The electrons transferred 607 into the conductive layer 605 must be balanced by electrons transferred 609 out of the conductive layer onto oxidized mediator where they are in abundance. An abundant supply of oxidized mediator is found in the flux of oxidized mediator 610 produced by the working electrode reaction 601. The overall transfer of reduced mediator forn rhe counter electrode 603 to the working electrode 602 is completed by diffusion of reduced inediator 61 i from the conductive layer 605 to the working electrode 602. The reactions 607, 609 shown in Fig 6 involve simultaneous electron transfer into and out of the conductive player 605. This is possible, in fact it is a re quireent, because the conductive ayer 605 acts as an electrode and the chemical potential of a solution in contact with an electrode will always try to reach equilibrium with the electrode WO 2009/015077 PCT/US20081070630 9 potential. Since the layer 605 is conductive, it can only be at a single uniform otnt i throuu sC it is the chemical potentials of the various parts of the solution in contact with the conductive later 605 that are brought into equilibrium through electron transfer. This electron transfer is effectively instantaneous in. the coductive layer 605 so it provides a very rapid path for electron transfer front regions of the test cell that would otherwise take much time to reach a steady state. In addition, the proximity of the conductive layer to the electrodes and their parallel orientation render much of the diffusion effectively one-dimensiona] The simple addition of a conductive layer over side-by-side electrodes therefbre rapidly reduces the time it takes to generate a steady-state flux between the electrodes. This allows much smaller sample sizes, since flux between the electrodes is no longer undesired. It allows an improved accuracy because the flux is now arriving principally at the electrode surfaces rather than along their adjacent edges and so is dependent on the far more controllable electrode area than the electrode separation. It also produces a near one-imensional diffusion at a rapidly reached steady state and so the ability to probe the system by electchemnical techniques and apply useful corrections such as those described in US Patent Publication No. US20050109637Al, and US patent No. 6284125 are at their most effective. Fig. 7 shows a cross section through the test cell of an embodiment of a test strip according to the invention. In Fig. 7, the second insulating layer 35 and the conductive coating 40 are replaced with. a conductive layer 70. Fig. 8 shows a top view of a test strip of the type shown in Fig. 8. Test cell 36 is opened to the extenor to permit introduction of sample via channel. 61 formed in the spacer layer. A vent 82 is fbrmed through the conductive layer 70 (or aternatively through the insulating substrate ) 1 to facilitate flow into the test cell. Working and. counter electrodes 32, 33 are connected to conductive leads 84, 85, respectively. At the end opposite the channel 8, a portion of the conductive layer 60 and the spacer layer are cut away to expose a part of the insulating substrate 31 and of leads 84 and 85 to allow connection of these leads with a meter. In the embodiment shown in Fig. 8, part 83, 83' of the con.luctive layer 60 is left in place at the edges of the test strip. This not only p-rovides better dimensional stability but electrical contact with this WO 2009/015077 PCTUS2008/070630 10 layer can be used to detect insertion of a test strip into a test meter, for example as described in US Patents Nos. 4,999,582, 5,282,950 and 6,618,819, which are incorporated herein by reference. The electrical contact could be between two points on either one of the parts 83, and 83' or it could be between one point on part 83 and another part on part 831. The embodiment disclosed in Fig. 8 can also facilitate detection of sample introduction into the cell. For example, by monitoring for a change in resistance between the conductive layer 80 and either of the working or counter electrodes 32, 33. the introduction of sample into the test cell can be monitored, and used as a signal to activate application of a me asureient potential. The use of sample detection in this way is known in the art, for example from US -patents Nos 5,108,564 and 5,266,1'79, which are incorporated herein by reference. While the embodiment of Fig. 8 is convenient for use in insertion and sample detection, embodiments, with an insulating outer surface can also be used providing that a portion of the insulation is removed or a lead is formed to allow contact with the conductive surface. It should be understood, however, that no electrical signal needs to be applied to or measured from this conductive coating or layer in order to achieve the benefits of reduced testing time.
权利要求:
Claims (11)
[1] 1. An electrochemical test strip for detection of an analyte comprising a first insulating substrate layer, a second substrate layer, and an intervening insulating spacer layer wherein, (a) an opening in the insulating spacer layer defnes a test cell which is in contact with the inner surface of the first substrate on one side and the inner surface of the second substrate on the other side; Cu) the size of the test cell is determined by the area of substrate exposed and the thickness of the spacer layer working and counter electrodes appropriate for the analyte to be detected disposed on the first insulating substrate in a location within the test cell, said working and counter electrodes being associated with conductive leads that allow connection of the electrodes to a meter for determination of analyte wherein a region of the second substrate facing the working and counter electrodes is conductive.
[2] 2. The test strip of claim 1, wherein the working electrode comprises a enzyme and a redox mediator.
[3] 3. The test strip of claim 2, wherein the enzyme is glucose oxidase.
[4] 4. The test strip of claim i, wherein the entirety of the second substrate layer is conductive.
[5] 5- The test stnrp of claim 4, wherein the working electrode comprises a enzyme and a redox mediator.
[6] 6. The test strip of claim 5, wherein the enzyme is glucose oxidase.
[7] 7. The test strip of claim l, wherein the second substrate layer comprises a second insulating substrate and a conductive coatn. WO 2009/015077 PCT/US20081070630 12
[8] 8 The test strip of claim 7, wherein the working electrode comprises a enzyme and a redox mediator.
[9] 9. The test strip of claim 8, wherein the enzyme is glucose oxidase.
[10] I0. A method for detecting an analyze in a sample comprising te steps of: introducing the sample into the test cell of any one of claims 1 to 9; applying a potential between the working and counter electrodes to generate a current indicative of analyte in the sample; and measuring the current to obtain a determination of analyte in the sample.
[11] 11. The method of claim 10, wherein the entirety of the second substrate layer is conductive, further comprising the step of monitoring the resistance between the conductive second substrate layer and the working and/or counter electrodes, as a measure of filling of the test cell with sample.
类似技术:
公开号 | 公开日 | 专利标题
AU2008279274B2|2013-05-02|Electrochemical test strip
EP1688742B1|2009-04-15|Electrochemical biosensor
JP4988059B2|2012-08-01|Method and apparatus for rapid electrochemical analysis
JP4879459B2|2012-02-22|Electrochemical biosensor strip for analysis of liquid samples
JP5185044B2|2013-04-17|System and method for discriminating a control solution from a physiological sample
US8038859B2|2011-10-18|Electrochemical sensor and method for analyzing liquid sample
KR100495935B1|2005-06-16|Small volume in vitro analyte sensor and methods
JP4891821B2|2012-03-07|System and method for discriminating a control solution from a physiological sample
KR20130143634A|2013-12-31|Systems and methods for high accuracy analyte measurement
US20060231421A1|2006-10-19|Method for Determination of Analyte Concentrations and Related Apparatus
EP2284526B1|2020-12-09|Biosensor system and method of measuring analyte concentration in blood sample
US20110079522A1|2011-04-07|Multi-analyte test strip with inline working electrodes and shared opposing counter/reference electrode
EP2765411A2|2014-08-13|Test strip, detecting device and detecting method
KR20130122738A|2013-11-08|Systems and methods of discriminating between a control sample and a test fluid using capacitance
US20170038331A1|2017-02-09|System and method for compensating sample-related measurements based on polarization effects of test strips
AU2017204379B2|2018-10-25|Electrochemical test strip
EP2297574B1|2014-01-08|Bio-sensor
AU2013204842B2|2016-01-28|Electrochemical test strip
KR102170067B1|2020-10-27|Test element for electrochemically detecting at least one analyte
同族专利:
公开号 | 公开日
AU2013204842B2|2016-01-28|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
JP3690683B2|2001-05-29|2005-08-31|松下電器産業株式会社|Biosensor|
法律状态:
2016-05-26| FGA| Letters patent sealed or granted (standard patent)|
优先权:
申请号 | 申请日 | 专利标题
US60/951,264||2007-07-23||
AU2008279274A|AU2008279274B2|2007-07-23|2008-07-21|Electrochemical test strip|
AU2013204842A|AU2013204842B2|2007-07-23|2013-04-12|Electrochemical test strip|AU2013204842A| AU2013204842B2|2007-07-23|2013-04-12|Electrochemical test strip|
AU2016200514A| AU2016200514B2|2007-07-23|2016-01-29|Electrochemical test strip|
AU2017204379A| AU2017204379B2|2007-07-23|2017-06-28|Electrochemical test strip|
AU2019200475A| AU2019200475A1|2007-07-23|2019-01-24|Electrochemical test strip|
[返回顶部]